我国学者在空气电池催化材料创制方面取得进展

无忧课题
686 阅读
2024-03-27 13:26:54

  图 介孔单原子催化材料用于中性锌-空气电池的示意图

  在国家自然科学基金项目(批准号:22088101)等资助下,复旦大学化学系赵东元-李伟课题组联合材料科学系王飞课题组在中性锌-空气电池单原子催化材料创制方面取得进展,他们揭示了两电子中性锌-空气电池催化材料的设计原则,构筑了新型可持续、低成本、高性能的电化学储能器件。研究成果以“可逆锌-空气电池的单原子催化两电子氧化还原化学(Two-electron redox chemistry via single-atom catalyst for reversible zinc–air batteries)”为题,于2024年2月26日在《自然‧可持续性》(Nature Sustainability)上发表。论文链接:https://doi.org/10.1038/s41893-024-01300-2。

  锌-空气电池具有能量密度高、成本低、安全性高的优点,被广泛认为是下一代储能系统的有力备选。与传统碱性锌-空气电池相比,新型两电子中性锌-空气电池具有锌负极利用率高、正极可逆性好、副反应少等优势。然而,中性锌-空气电池工况环境复杂,气-液-固三相反应在阴极上同时发生,不溶的绝缘固态放电产物(过氧化锌)会堵塞物质输送隧道并覆盖活性位点,并且在充放电过程中不断积累的产物通常会产生高的过电位,进一步造成器件性能的恶化。因此,亟需开发高效催化材料,从而助力高性能中性锌-空气电池的开发。

  上述研究团队发展了一种连续合成的策略,制备了一种二维介孔的单原子催化材料。此材料集成了非对称的FeN2S2催化位点,可以高选择性地催化两电子氧还原反应。更重要的是,石墨化的多孔框架为氧吸附、电解质浸没和电子转移提供了理想的纳米反应器,并将固态放电产物(过氧化锌)的生长限制在纳米尺度(~6 nm),从而实现过氧化锌的可逆生成与溶解,提升循环稳定性。因此,两电子中性锌-空气电池的放电电位显著增强(~1.20 V),在0.2 mA cm−2下的寿命为400 h。研究团队进一步结合X射线吸收光谱、电子显微学和理论模拟,解析了活性中心及催化动态过程,阐明了催化材料各组分的协同增效原理,揭示了催化反应机制,建立了构-效关系,为高性能催化材料的创制提供了参考。